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A compact numerical algorithm for solving the time-dependent
mild slope equation
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SUMMARY

The mild slope equation has been widely used to describe combined wave refraction and di�raction.
In this study, a new numerical algorithm is developed to solve the time-dependent mild slope equa-
tion in a second-order hyperbolic form. The numerical algorithm is based on a compact and explicit
�nite di�erence method that is second-order accurate in both time and space. The algorithm has the
similar structure to the leap-frog method but is constructed on three time levels for the second-order
time derivative term. The numerical model has the capability of simulating transient wave motion by
correctly predicting the speed of wave energy propagation, which is important for the real-time forecast
of the arrival time of storm waves generated in the far �eld. The model is validated against analytical
solution for wave shoaling and experimental data for combined wave refraction and di�raction over a
submerged elliptic shoal on a slope (Coastal Eng. 1982; 6:255). Lastly, the realistic scale Homma’s
island (Geophys. Mag. 1950; 21:199) is studied with the use of various wave periods of T =720 s,
T =120 s, and T =24 s. These wave periods correspond to long, intermediate, and short waves for the
given topography, respectively. Comparisons are made between numerical results and existing analyt-
ical solutions in terms of the wave ampli�cation around the island, which serves as the indicator for
the potential wave runup. Excellent agreements are obtained. The model runs on a PC (Pentium IV
1:8GHz) and the computer capacity allows the computation of a mesh system up to 3000× 3000, which
is equivalent to about 150× 150 waves or a large area of 540 km× 540 km for a wave train with the
period of T =60 s. Copyright ? 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

To simulate linear wave propagation from deep water to shallow water with the use of a
uni�ed equation model, the mild slope equation can serve as a good candidate. The mild
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slope equation, which can be derived from the potential �ow theory (e.g. References [1–3]),
has been widely used to describe the combined wave refraction and di�raction over a slowly
varying topography. The time-dependent mild slope equation is written as [4, 1997; p. 254]
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where � is the free surface displacement, c the wave phase velocity, cg the wave group
velocity, k the wave number, and � the angular frequency, e.g. �=2�f= kc with f being
the wave frequency.
Equation (1) is a second-order hyperbolic equation that has second-order derivatives in

both time and space. Few numerical attempts have been made to solve (1) directly, probably
due to the seeming di�culty of marching the time step in the second-order time derivative
term. As an alternative, for a harmonic wave train, the time derivative term in (1) can be
eliminated. This leads to the steady-state mild slope equation [2]:
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The above equation is of elliptic type and the numerical solution generally requires a signi�-
cant number of iterations. Berkho� [2] attempted to solve (2) numerically but the method is
restricted to a small domain. Later, Panchang et al. [5] adapted a pre-conditional conjugate
gradient method to accelerate the convergence rate and thus the model could be applied to a
larger area. Li and Anastasiou [6] proposed another solution procedure by using the multigrid
technique that also aimed at speeding up the convergence rate.
To avoid the iterative numerical solution for the elliptic Equation (2), one alternative is to

parabolize the equation. Radder [7] was the �rst one to derive the parabolic approximation and
applied it to the study of wave passage through a submerged shoal. Dalrymple and Kirby [8]
extended the validity range of the parabolic approximation and introduced an angular spectrum
concept into their model. Liu [9] summarized the development of parabolic approximation and
its application range. It is noted, however, that both Equation (2) and parabolic approximation
can only be employed for the steady-state wave solution and thus the transient behaviour of
waves cannot be recovered. In reality, the prediction of this transient behaviour may be very
important. For example, in a group of wind waves, longer waves travel faster than shorter
waves and thus they will arrive at the destination earlier. This phenomenon can only be
correctly simulated by solving Equation (1).
The third alternative that retains the transient wave properties is to split the original time-

dependent mild slope equation (1) into a pair of �rst-order hyperbolic equations. The represen-
tative study of this approach is by Copeland [10]. An arti�cial �ux term was introduced into
the equation and a �nite di�erence form was used to solve the resulting equations. Madsen
and Larsen [11] improved the solution procedure by employing an e�cient ADI algorithm.
Introducing a slow coordinate for the time variable, Li [12] obtained a �rst-order wave evo-
lution equation with the use of the perturbation method. Recently, Abohadima and Isobe [13]
extended Madsen and Larsen’s [11] approach to the non-linear wave di�raction computation.
The de�ciency of such approach is that a pre-step of equation splitting is always needed that
introduces the arti�cial �ux and therefore requires the additional e�ort of solving it. Besides,
since there is no de�nite physical de�nition for this arti�cial �ux, it imposes uncertainties
when the initial and boundary values are speci�ed.
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In this study, we shall develop a numerical technique to directly solve the original time-
dependent mild slope equation (1). Compared with the previous approaches, this approach
is simple, straightforward, and e�cient. It can be applied to a large-area computation for
transient wave propagation. In the following sections, we will �rst introduce this new numer-
ical algorithm. The error and stability analyses will be performed to reveal the properties of
the new scheme. The numerical model will be �rst used to simulate the problems of one-
dimensional wave propagation in the constant and varying water depth. Comparisons with
relevant theories will be made to demonstrate the accuracy of the model. Secondly, numerical
simulation will be performed for wave propagation over a submerged shoal on a slope, during
which both wave refraction and di�raction are important. Numerical results are compared to
available experimental data and other numerical results. Finally, the model is used to study
wave transformation around a circular island mounted on a paraboloidal shoal. Waves with
di�erent wave periods are simulated and numerical results of wave ampli�cation around the
island are compared to existing analytical solutions for the long wave, the short wave, and
the wave in intermediate water depth.

NUMERICAL ALGORITHM

Governing equations and boundary conditions
As mentioned earlier, the governing equation we will solve numerically is the time-dependent
mild slope equation (1). In this equation, wave number k and angular frequency � is related
by the linear dispersion relationship:

�2 = gk tanh kh (3)

where g is the gravitational acceleration and h is the local still water depth. The phase velocity
c and group velocity cg can be calculated as follows:
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There are generally three types of boundaries when Equation (1) is solved, namely, the incom-
ing wave boundary, the radiation (open) boundary, and the solid boundary. The corresponding
boundary conditions are summarized below.
At an incoming wave boundary, a linear periodic wave is speci�ed:

�(t)=
H0
2
sin(�t) (5)

where H0 is the wave height of incident waves. Waves can also be sent at an arbitrary angle.
At a radiation boundary, waves are allowed to leave the domain freely. In this study, we

employ the second-order radiation boundary condition derived by Engquist and Majda [14]:
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where n and s represents the normal outward and tangential directions at the radiation bound-
ary. For waves with normal incidence, Equation (6) reduces to the familiar form:
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At a solid boundary, full wave re�ection is expected and we have

@�
@n
=0 (8)

Again, n represents the normal direction into the solid surface.

Numerical algorithm

A staggered grid system is used in which all scalar variables (�; k; �; c, and cg) are de�ned
at cell centres (Figure 1). The solid area (e.g. a land inside the computational domain) is
represented by the shaded cells in Figure 1. The solid boundary condition (8) is applied at the
interface between a �uid cell and a solid cell. The arrows in Figure 1 represent the locations
where c and cg are de�ned in the spatial derivative terms of Equation (1). For simplicity, the
numerical algorithm discussed below is based on constant values of �x; �y and �t, though
the model can be easily extended to a non-uniform grid system.
With the computational cells and physical variables being such de�ned, the explicit �nite

di�erence scheme for (1) is written as follows:

�n+1i; j − 2�ni; j + �n−1i; j
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+[�2 − k2i; j(ccg)i; j]�ni; j=0 (9)
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η σ, k, , c, cg

Figure 1. Schematic drawing of computational cells and location de�nition of physical variables.
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The above scheme is similar to the leap-frog method that is often used to solve the system of
�rst-order hyperbolic equations. However, the present method is constructed on three levels of
time step for the second-order time derivative term. It is believed that this is the �rst scheme
of this kind proposed for solving the time-dependent mild slope equation. It is noted that �
in (9) is a constant throughout the computation whereas k; c, and cg are functions of space
only. Given a wave period T , the angular frequency can be calculated by �=2�f=2�=T .
With the topography information of the local still water depth h(x; y), the linear dispersion
equation (4) can be employed to �nd the value of k at every grid point. The corresponding
c and cg will then be calculated by using (4). Re-arranging (9), we have
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It is noted that when we march the time step from n to n+1, the previous time step (n− 1)
information of � is still needed. In terms of computational e�ort, this simply means that one
more array for the time step (n− 1) needs to be stored.
Considering that Equation (1) actually represents an initial-and-boundary-value problem,

both the initial and boundary conditions are required. In the computation, we may always
start from n=1 where there is no wave inside the computational domain (e.g. �(x; y)=0
everywhere). Obviously, we can also set �(x; y)=0 everywhere at the previous time step
n=0. The solution can be then marched forward with the well imposed boundary conditions
as de�ned in (5), (6), and (8).

Truncation errors and stability analysis

A �nite di�erence algorithm always contains numerical errors due to the discretization of a
continuous domain into discrete grid points. The characteristics of these numerical errors can
be revealed by error analysis based on Taylor expansion. For example, we can expand all
terms of � about �ni; j as follows,
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Substituting (11) into (9) and after some algebraic cancellation, we have{
@2�
@t2

− @
@x

(
ccg
@�
@x

)
− @
@y

(
ccg

@�
@y

)
+ (�2 − k2ccg)�

}n
i; j
=TE (12)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:625–642



630 PENGZHI LIN

The left-hand side of (12) is exactly the same as the left-hand side of (1), the original time-
dependent mild slope equation, whereas the right-hand side of (12) will be non-zero in general
and it is termed as truncation errors TE. TE is composed of an in�nite number of terms and
usually we are only concerned with the leading order terms. The expression of TE in (12) is
found to be
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In deriving the above expression, both c and cg have been kept constant to simplify the
analysis. The subscripts i; j, and n are also dropped for convenience. We shall easily �nd that
the leading order errors are proportional to squares of �t; �x, and �y and thus the scheme
is second-order accurate in both time and space. To better understand the characteristics of
TE, we will make a further transformation with the use of (1) to convert the time derivative
in (13) to spatial derivatives. The �nal results are given as follows:
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We can now examine the physical implication of each term in (14). Based on the type of
contribution to the second-order time derivative of � on the left-hand side of (12), TE in (14)
can be classi�ed into three groups, namely, di�usion (the �rst three terms), advection (the
fourth term), and source (the �fth term). Both advection and source terms are proportional
to �2 − k2ccg, which is zero for a long wave, implying that the model will be more accurate
in simulating long waves.
There are a few methods for the stability analysis. One of them is von Neumann stability

analysis by using Fourier analysis. As an alternative, the Harts Heuristic stability analysis
[15], which makes use of the physical contribution of each term in the truncation errors, is
employed in this study. Based on the Heuristic stability analysis, the leading di�usion terms
could contribute to numerical instability if the numerical di�usivity is negative. This leads
us to the establishment of stability condition for this numerical algorithm, i.e. the di�usion
coe�cients have to be greater than or equal to zero:

�x2 − ccg�t2¿0 and �y2 − ccg�t2¿0 ⇒ �t6min
(
�x√ccg ;

�y√ccg

)
(15)

In practical computations, �t calculated from (15) is usually halved as a safety measure.

MODEL VERIFICATION AND DISCUSSION OF RESULTS

In the following paragraphs, we conduct a series of numerical tests to validate the accuracy
and e�ciency of the model.
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Propagation of short and long waves in a constant water depth

In this section, the problem of one-dimensional linear wave propagation in a constant water
depth will be studied. There are three objectives in running this numerical test. One is to �nd
the minimum number of grid points required in one wavelength to achieve the acceptable
accuracy of numerical results. This will serve as the basis for the later more complicated two-
dimensional computation. The second objective is to test the e�ectiveness of the radiation
and solid boundary condition as de�ned in (6) and (8) for absorbing and re�ecting waves.
The third objective is to demonstrate the ability of the current model to handle a transient
problem, which is important for the real-time wave forecast.
It is well known that the wave energy is transmitted at the speed of group velocity rather

than phase velocity. In deep water, the group velocity is always smaller than the phase
velocity. Therefore, when a wave train propagates into the calm and deep water, wave crests
will vanish at the front end, which moves at a slower speed than the phase velocity. Such e�ect
is clearly demonstrated in Figure 2, in which a short wave train with a wave period of T =1s
is propagated into a calm water with a constant depth of h=1 m. The radiation boundary
condition (6) is imposed on the right exit. In this case, c=1:559m=s and cg = 0:783m=s with
kh=4:03. A uniform grid of �x=0:10m and constant �t=0:04s are used in the simulation.

0 10 20 30 40 50 60 70 80 90 100

t=  0s

t= 20s

t=40s

t=60s

t=80s

t=100s

t=120s

t=140s

t=160s

t=180s

t=200s

x (m)

Figure 2. Propagation of short waves (kh=4:03) into calm water; the thick dashed and solid lines
represent the front location calculated by cg and c, respectively.
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Figure 3. Propagation of long waves (kh=0:101) into calm water; the thick dashed
and solid lines (almost identical) represent the front location calculated by cg and c,
respectively; the top curves represent the standing waves when the right boundary

changes from the radiation boundary to a solid wall.

Equivalently, one wavelength is covered by about 15 grid points. In Figure 2, we see that the
front of the wave train is propagating roughly at the speed of cg, which is highlighted by the
thick dashed line. The thick solid line indicates the front line location calculated by the phase
speed c. Some leakage of wave energy across the dashed line is also observed, due to wave
dispersion. A well established wave train is observed at t=200s, when the leading wave front
leaves the computational domain freely through the radiation boundary. This demonstrates the
e�ectiveness of the radiation boundary condition as speci�ed in (6). Moreover, it also shows
that 15 grid points in one wavelength are adequate to achieve the accurate results.
In the same water depth, a long wave train with a wave period of T =20 s is also

simulated. The corresponding values of c and cg are 3.125 and 3:115m=s with kh=0:101. A
uniform grid of �x=1:0m and constant �t=0:1 s are used in the simulation. The numerical
results are plotted in Figure 3. It is seen that since cg∼ c, the thick dashed line and the thick
solid line are almost identical. To further test the solid boundary condition (8), the problem is
re-run for a longer time with the right boundary being changed from the radiation boundary
to the re�ecting solid boundary. The computational results are shown at the top of Figure 3
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within one wave period from t=600 to 620 s. It is seen that perfect standing waves are
formed in front of the solid wall.

Wave shoaling from deep to shallow water

In this section, we will study a one-dimensional wave shoaling problem, during which we are
able to demonstrate the conservation of wave energy in the long distance wave propagation.
When waves propagate from the deep to shallow water, the density of wave energy changes
with the local group velocity. Accordingly, the wave height, which is proportional to the
square root of wave energy density, also changes. The shoaling formula can be easily derived
from the conservation of energy �ux [16]:

cgE=constant ⇒ cgH 2 = constant (16)

In the following example, we will simulate an idealized case of a linear wave train propagating
across a continental shelf from the deep water to the shallow water. The deep water depth is
3000 m and shallow water depth 40 m, which are connected by a constant slope of s=1=50.
The entire computational domain covers 200 km. The incident wave has the wave period of
60 s, a typical value for waves generated during a storm surge. The corresponding values
of kh are 3.365 in deep water and 0.213 in shallow water. Therefore, the waves can be
regarded as short waves in the deep ocean but long waves in shallow water region. Figure 4
shows the set-up of the problem and the calculated free surface pro�le. It is observed that the
wave height decreases �rst due to the increase of cg when waves propagate from deep water
to intermediate wave depth. Then the wave height increases rapidly when waves approach
to shallow water region. Such feature agrees excellently with the prediction based on the
shoaling formula (16). This implies that the model could well conserve wave energy during
the long distance wave propagation.

Combined wave refraction and di�raction over a submerged elliptic shoal on a slope

A linear wave train propagating over a submerged elliptic shoal mounted on a slope [17]
is a classical problem for verifying a wave refraction–di�raction model. The problem set-up
is shown in Figure 5, in which an elliptic shoal is mounted on a sloping beach. The slope-
oriented coordinates (x′; y′) are introduced that is related to the computational co-ordinates
(x; y) as follows:

x′=(x − x0) cos 20◦ + (y − y0) sin 20◦; y′=(y − y0) cos 20◦ + (x − x0) sin 20◦

where (x0; y0) is the centre of the shoal. The water depth on the slope is thus:

h=

{
0:45− 0:02(5:84− y′) for y′¡5:84;

0:45 for y′¿5:84

The water depth above the shoal, e.g. (x′=4)2 + (y′=3)2¡1, is modi�ed by

hshoal = h+ 0:3− 0:5
√
1−

(
x′

5

)2
−
(
y′

3:75

)2
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Figure 4. (a) Wave shoaling when propagating from the deep to shallow water depth; the dashed lines
represent the envelope predicted by the shoaling formula. (b) Problem set-up.

In this study, the computation domain covers a rectangular region of −12 m6y625 m and
−20 m6x620 m. A uniform grid of �x=�y=0:1 m and constant �t=0:05 s is used in
the computation. The incident wave has a wave period of T =1 s and the wave height of
H0 = 0:0464 m. Experimental measurements were made at �ve sections behind the shoal (i.e.
y= − 1;−3;−5;−7, and −9 m)
Numerical computations are carried out up to t=T =60. Totally 20 waves between t=T =35

and t=T =55 are used to calculate the average wave height in the computational domain. The
present numerical results are compared with the experimental data and the earlier numerical
results by Panchang et al. [5] based on the steady mild slope equation (2) (see Figure 6). It
is found that the overall agreement between the present results and those by Panchang et al.
[5] is very good, which is not a surprise. Relatively large discrepancies are found between
the numerical results and experimental data at the downstream sections. In fact, these are
the common features for the previous numerical modeling based on the linear mild slope
equation (e.g. References [5, 6, 17]). The reason for the discrepancies is found to be the non-
linear wave e�ects, which are neglected in the linear wave models. Kirby and Dalrymple [18]
proposed a remedy for this problem by using the non-linear dispersion equation instead of the
linear equation (4) and they obtained better results in their parabolic approximation solution.
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Figure 5. Problem set-up in Berkho� et al.’s [17] study.
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Figure 6. Comparisons of wave ampli�cation among the present numerical results (solid lines), numerical
result for the steady mild slope equation by Panchang et al. [5] (dashed line), and experimental data

(asterisks) at �ve sections behind the shoal.

Panchang et al. [5] con�rmed this �nding when they applied the same non-linear equation
into their elliptic mild slope equation model. Li and Fleming [19] solved a fully non-linear
wave model and found that with the inclusion of non-linear e�ects, better results were indeed
achieved. It is one of our future aims to extend the current model so that it can include the
non-linear e�ects.

Maximum wave runup around a cylindrical island mounted on a paraboloidal shoal
Storm surges can cause severe coastal �ooding and have been reported to claim both the
loss of life and the damage of property (e.g. References [20, 21]). In general, the coastal
�ooding is caused by the rise of mean water level due to the large-scale atmospheric pressure
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variation, which is enhanced by the attack of waves induced by strong winds. Convention-
ally, the mean water level is simulated by the depth-integral equation models and the waves
by the energy spectrum models (e.g. WAM by WAMDI Group [22] and SWAN by Booij
et al. [23]). Recently, the coupling of two types of models was implemented by Mastenbroek
et al. [24]), Zhang and Li [25], and McInnes et al. [26]. In this study we shall be only
concerned about the wave modelling part. Although the energy spectrum models have the
advantage of simulating large-scale variation of wave height, they lack of ability to calculate
wave di�raction. Only limited progresses were made in recent years to resolve this problem
(e.g. [27]). In reality, wave di�raction can be very important. For example, the largest wave
runup can sometimes occur on the lee side rather than the front side of the island due to the
combined wave refraction and di�raction (e.g. [28]). In order to predict accurately the coastal
�ooding, the numerical model based on the mild slope equation as developed in this study
could become an alternative to the energy spectrum models to predict wave propagation up
to certain distance away from the shoreline where the linear wave assumption is still valid.
In this section, we will calculate the maximum wave runup around an idealized cylindrical

island mounted on a paraboloidal shoal [29], for which various analytical solutions are avail-
able for model veri�cation. The cylindrical island has a radius of r0 = 10 000m and the geom-
etry of the paraboloidal shoal can be described by a function of h= �r2 where �=4=900 000
(all lengths are in meters; see Figure 7). When a wave train propagates towards the island,
it experiences a combined e�ect of wave shoaling, refraction, di�raction, and re�ection. This
imposes a great challenge for a numerical model and it is our task here to check whether the
present model can still generate reliable results.
Waves with di�erent periods from T =720; 120 to 24 s are to be simulated. The wave

ampli�cation factors along the shoreline of the island are calculated, which can be used to
predict the potential risk of coastal �ooding. Firstly, consider the case of T =720s, which falls
into the lower range of seismic waves (e.g. tsunami) or the upper range of waves generated
during a storm. In this case, waves can be regarded as long wave even in the deep water
region of h=4000 m where kh=0:177. The value of kh reduces to 0.058 in shallow water
region at the shoreline. Therefore, the analytical solution derived from the linear shallow water
equation, which is the asymptotic form of the mild slope equation for very long waves, can
accurately predict wave ampli�cation factors along the island [29]. In this case, since the
wavelength is much larger than the island, the numerical accuracy depends on the resolution
of the island. We have used a uniform grid of �x=�y=100m, from which 100× 100 grid
points are employed to resolve the island con�guration. The entire computation is chosen to
be 200 km× 200 km and is resolved by a 2000× 2000 grid system. A constant �t=0:25 s
is used. In total 16 000 time steps have been carried out that correspond to a total time
of 4000 s. Figure 8 shows the comparisons of wave ampli�cation between numerical results
from the current model and analytical solution by Homma [29]. The overall agreement is
excellent, except for a small underestimation of wave height on the front side of the island
(e.g. �=180◦). It is found that for this type of wave incidence, the maximum wave runup
occurs on the front of the island right facing the wave attack. On the lee side, the wave
amplitude is only about half of that on the front.
The next case we investigate has the wave period of T =120 s. The values of kh in deep

and shallow water are 1.299 and 0.357, indicating that waves start from intermediate depth
and become shallow water waves near the island. Such case cannot be accurately predicted by
Homma’s [29] theory which is only valid for the shallow water depth. Recently, an analytical

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:625–642



638 PENGZHI LIN

0 20 40 60 80 100
 -4

 -3

 -2

 -1

0

1

h=4/900000*r2

z 
(k

m
)

 -100  -80  -60  -40  -20

 -100  -80  -60  -40  -20

0 20 40 60 80 100
 -50

 -40

 -30

 -20

 -10

0

10

20

30

40

50

x (km)

y 
(k

m
)

Incident

wave

�

Figure 7. Set-up of Homma’s island; �=0◦ is aligned with x-axis.

solution based on the elliptic mild slope equation with an approximate dispersion relationship
was proposed by Liu et al. [30]. The solution has proved to be consistently accurate for
predicting wave ampli�cation in deep, intermediate, and shallow water. We shall use this
theory to validate our numerical results. In the numerical simulation, the same mesh system
as used in the case of T =720 s is adapted. Comparisons are given in Figure 9 and very
good agreement is again obtained. Compared with the case of T =720s, more oscillations are
observed along the island in Figure 9. An interesting �nding is that the wave ampli�cation
factor reaches about 4 on the lee side of the island (e.g. �=0◦), whereas it is only about 2
on the front side. This indicates a strong energy focusing and trapping by the island due to
the combined wave refraction and di�raction. Under such circumstance, the lee side of island
is still exposed to the severe risk of coastal �ooding.
The last case we will examine has T =24s. This wave period is within the lowest range of

storm waves. In this case, the values of kh in deep and shallow water are 27.9753 and 3.1201,
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Figure 8. Comparisons of wave ampli�cation along the shoreline of the island between the numerical
results (circle) and the analytical solution by Homma [29] (line) for T =720 s.

respectively. This means that the waves can be classi�ed as short waves in the entire domain.
In other words, the variation of bottom topography has little in�uence on the �nal results.
Therefore, the analytical solution derived by MacCamy and Fuchs [31] based on Helmholtz
equation for the wave di�raction around a large circular cylinder is a good reference to validate
our numerical results. In this case, the wavelength is only about 900m and thus our previous
mesh discretization with �x=�y=100m is not enough to resolve wave motion. In order to
gain adequate resolution, we �rst reduce the computation domain to 100km× 100km with the
mesh size of �x=�y=50m. The calculated wave ampli�cation is compared to the analytical
solution in Figure 10. It is seen that the model captures the general trend of the variation of
wave amplitude along the shoreline, though �uctuations are found in the numerical results.
These �uctuations are caused by the discretization of smooth shoreline into stair-type of solid
boundary as illustrated in Figure 1. The magnitude of these �uctuations should be reduced
by further re�ning the mesh size, which is con�rmed by running the same problem with a
smaller mesh size of �x=�y=25 m. The agreement with the analytical solution is greatly
improved as shown in Figure 10.
Finally, we will roughly estimate the computational resource required for a practical simu-

lation. All the above simulations have been performed on a PC (Pentium IV 1:8 GHz) with
the memory of 512 MB. With such con�guration, we are able to run a mesh system up to
3000× 3000. The CPU time is about 72 h for carrying out a computation up to 15 000 time
steps, which in most of cases are su�cient for one run. If we use 20 grid points to resolve
one wavelength, we are able to cover a range of 150× 150 waves, an area much bigger than
what most of the previous phase-resolving numerical models can a�ord. Considering a wave
period of T =60 s, a typical value for waves generated during a storm, the wavelength in the
shallow water of h=444 m is about 3600 m. The a�ordable computational domain is then
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Figure 9. Comparisons of wave ampli�cation along the shoreline of the island between the numerical
results (circle) and the analytical solution by Liu et al. [30] (line) for T =120 s.
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Figure 10. Comparisons of wave ampli�cation along the shoreline of the island between the nu-
merical results (circle: �x=�y=50 m; asterisk: �x=�y=25 m) and the analytical solution

by MacCamy and Fuchs [31] (line) for T =24 s.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:625–642



A COMPACT NUMERICAL ALGORITHM 641

equivalent to 540 km× 540 km. This computational domain can be doubled or even tripled
with the code parallelization possible in the near future.

CONCLUSION

In this study, a new numerical algorithm has been developed to solve the time-dependent mild
slope equation, which has a second-order hyperbolic form. The algorithm has a compact form
and is second-order accurate in both time and space. The algorithm has the similar structure
to the leap-frog method but is constructed on three levels of time step for the second-order
time derivative term. Numerical analyses show that the leading truncation errors are composed
of di�usion, advection, and source terms, the latter two of which will vanish for long waves.
The numerical scheme is conditionally stable with the criterion of �t6min(�x;�y)=√ccg.
The numerical model has been veri�ed for one- and two-dimensional problems. For one-

dimensional problems, the propagating of short and long waves in a constant water depth
is �rst studied and it is demonstrated that the model can accurately capture the transient
feature of wave advancement into the calm water, during which the crests vanish in the
front end of wave train for short waves. This is an important feature for real-time wave
forecast, which requires the correct prediction of the arrival time of the wave front. Waves
propagating over an idealized continental shelf are also studied and the numerical results of
wave amplitude perfectly match the shoaling formula, showing the satisfactory characteristics
of energy conservation of the present algorithm.
For two-dimensional veri�cation, wave focusing behind a submerged elliptic shoal mounted

on a slope [17] is studied. The present numerical results are compared with the experimental
data and other numerical results at �ve cross-sections behind the shoal. Reasonable agreements
are obtained. Some discrepancies from the experimental data are observed at the downstream
sections, mainly due to the non-linear e�ects that have not been included in the present linear
model. It is one of the future objectives to extend the present algorithm to a non-linear mild
slope equation so that the application range of the model will be widened.
Finally, we have studied the case of wave runup around a cylindrical island mounted on a

paraboloidal shoal [29]. In this case, the combined e�ects of wave shoaling, refraction, di�rac-
tion, and re�ection are present and they impose a great challenge to the numerical modelling.
Waves with di�erent wave periods, e.g. T =720; 120, and 24 s are simulated. These waves
represent long, intermediate, and short waves, respectively, and cover a typical range of waves
generated during a storm. The numerical results are compared with the available analytical
solutions derived from the linear shallow water equation [29], the mild slope equation with an
approximate dispersion relation [30], and Helmholtz equation [31]. The overall comparisons
are excellent.
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